由于利用介质潜热,以热管、VC(Vapor Chamber)为代表的相变传热技术具有显著高于导热、对流的换热系数和散热能力,是解决日益增长的产品散热需求的关键技术。在芯片功耗与热流密度持续攀升的前景下,VC等相变传热技术的发展和应用切实决定着通信产品散热可靠性与性能升级空间,具有至关重要的意义。
1 散热器技术的演进
传统的散热系统主要依赖单相材料导热将热量从器件传导至散热器表面,再由空气通过自然对流(自然散热系统)或强迫对流(强迫风冷系统)将热量散到环境中。热传导的效率取决于同时也受限于材料固有的导热性能。
而以热管、VC(Vapor Chamber)为代表的相变传热技术,是利用介质在受热区域蒸发、在遇冷区域凝结,同时吸收或释放相应的相变潜热,交替循环,实现热量的迅速扩散或迁移。潜热的吸收和释放是一个迅速高效的过程,且采用两相传热通常也会选择潜热较大的工质,因此传热效率非常高,等效导热系数可以达到2000 W/m·K以上,远超金、银、铜、铝等纯金属材料(200~400 W/m·K),能够支撑传统散热器无法满足的更大功耗、更高热流密度传热需求。同时,可与多种冷源形式(自然对流、强迫风冷、液冷、辐射等)相匹配,应用形式灵活多样。
2 VC均热板技术的发展
VC均热板是目前除热管外工艺较为成熟,在通信、电子行业应用最广泛的一类相变传热产品。典型的VC为扁平封闭式形态,由壳体、毛细结构、支撑结构和工质组成,通过工质的蒸发冷凝和毛细输运实现高效热传导,将热量从集中区域扩散至整个结构平面。
得益于大面积毛细特性与二维甚至三维热扩散的优势,VC具有更高的热流密度承载能力,尤其针对热流密度超过50W/cm2的电子器件冷却,均温效果显著胜过纯金属或嵌热管式散热基板,能够大幅提升散热器效率。在芯片热流密度超过100W/cm2的发展趋势下,VC无疑是支撑通信设备性能升级的关键技术。
同普通热管管壳一样,VC的壳体通常也是由金属材料制成。目前地面应用绝大部分VC都采用铜材薄板冲压成型而制成,因铜材的导热性能好,并具有良好的机械加工性能和焊接性能,成型工艺相对简单、精度较高。在消费电子、军工或航空航天领域,为了满足更进一步的高强度、超薄化或轻量化需求,不锈钢(高强度、耐腐蚀,成本低)、钛(高强度、低密度、耐腐蚀)等材料作为VC壳体也得到了一定的发展。进一步地,为满足降本降重的市场需求,行业内也逐渐开展了对铝基相变传热装置的探索。
高功耗、高热流密度芯片发展趋势对VC均温性能提出更高需求,VC的优化设计必须在提升毛细性能的同时从材料和结构多方面提升热量传导和气液输送的效率,从而大幅降低VC的热阻,才能实现在工作热流密度增大一倍甚至数倍的情况下,从热源到VC冷面的温差仍与目前低热流密度应用条件下的水平相当
江苏大秦国际展览有限公司
承办单位上海万富利展览服务有限公司
电话:吴经理 15262996445
邮箱:346152319@qq.com
地址:www.cstm-expo.com.cn
扫码关注获取
更多展会资讯